∴f'(x)=3ax2+2bx-a2(a>0)
依題意有
|
∴
|
解得
|
∴f(x)=6x3-9x2-36x..
(2)∵f'(x)=3ax2+2bx-a2(a>0),
依題意,x1,x2是方程f'(x)=0的兩個(gè)根,
且|x1|+|x2|=2
2 |
∴(x1+x2)2-2x1x2+2|x1x2|=8.
∴(-
2b |
3a |
a |
3 |
a |
3 |
∴b2=3a2(6-a)
∵b2≥0,
∴0<a≤6設(shè)p(a)=3a2(6-a),
則p′(a)=-9a2+36a.
由p'(a)>0得0<a<4,
由p'(a)<0得a>4.
即:函數(shù)p(a)在區(qū)間(0,4]上是增函數(shù),
在區(qū)間[4,6]上是減函數(shù),
∴當(dāng)a=4時(shí),p(a)有極大值為96,
∴p(a)在(0,6]上的最大值是96,
∴b的最大值為4
6 |