精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • cos的六次方的不定積分怎么求解!

    cos的六次方的不定積分怎么求解!
    那它在0到2/π的定積分是多少?
    數(shù)學(xué)人氣:386 ℃時間:2020-04-05 03:43:56
    優(yōu)質(zhì)解答
    so easy let me teach you.
    cos⁶x
    = (cos²x)³
    = [(1 + cos2x)/2]³
    = (1/8)(1 + cos2x)³
    = (1/8)(1 + 3cos2x + 3cos²2x + cos³2x)
    = 1/8 + (3/8)cos2x + (3/8)cos²2x + (1/8)cos²2xcos2x
    = 1/8 + (3/8)cos2x + (3/8)(1 + cos4x)/2 + (1/8)(1 + cos4x)/2 · cos2x
    = 1/8 + (3/8)cos2x + 3/16 + (3/16)cos4x + (1/16)cos2x + (1/16)cos4xcos2x
    = 5/16 + (7/16)cos2x + (3/16)cos4x + (1/16)(1/2)(cos6x + cos2x)
    = 5/16 + (15/32)cos2x + (3/16)cos4x + (1/32)cos6x
    ∴∫ cos⁶x dx
    = 5x/16 + (15/32)(1/2)sin2x + (3/16)(1/4)sin4x + (1/32)(1/6)sin6x + C
    = 5x/16 + (15/64)sin2x + (3/64)sin4x + (1/192)sin6x + C
    樓上那個方法用的對,但是算的不對.應(yīng)該如下才是正確
    ∫ cos⁶x dx
    = (1/8)∫ (1 + 3cos2x + 3cos²2x + cos³2x) dx
    = (1/8)∫ dx + (3/8)∫ cos2x dx + (3/8)∫ cos²2x dx + (1/8)∫ cos²2x cos2x dx
    = x/8 + (3/8)(1/2)sin2x + (3/8)(1/2)∫ (1 + cos4x) dx + (1/8)(1/2)∫ cos²2x dsin2x
    = x/8 + (3/16)sin2x + (3/16)(x + 1/4 · sin4x) + (1/16)∫ (1 - sin²2x) dsin2x
    = x/8 + (3/16)sin2x + 3x/16 + (3/64)sin4x + (1/16)[sin2x - (sin³2x)/3] + C
    = 5x/16 + (1/4)sin2x + (3/64)sin4x - (1/48)sin³2x + C
    錯誤的地方是第四步(1/16)∫ (1 - sin²2x) dsin2x = (1/16)(sin2x - (sin³2x)/3) ≠ (1/16)(x - (sin³2x)/3)
    這個積分在0到π/2上可用特別公式.
    ∫(0→π/2) cos⁶x dx
    = (6 - 1)!/6! · π/2
    = 5/6 · 3/4 · 1/2 · π/2
    = 5π/32
    對于公式如∫(0→π/2) sinⁿ dx = ∫(0→π/2) cosⁿx dx,n > 1
    當(dāng)n是奇數(shù)時
    = (n - 1)!/n! = (n - 1)/n · (n - 3)/(n - 2) · (n - 5)/(n - 4) · ... · 3/4 · 1/2
    當(dāng)n是偶數(shù)時
    = (n - 1)!/n! · π/2 = (n - 1)/n · (n - 3)/(n - 2) · (n - 5)/(n - 4) · ... · 3/4 · 1/2 · π/2,多了個π/2
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版