1×2×3×4 |
4 |
(2)設(shè)當(dāng)n=k(k∈N*)時(shí),等式成立,
即1×2×3+2×3×4+…+k×(k+1)×(k+2)=
k(k+1)(k+2)(k+3) |
4 |
則當(dāng)n=k+1時(shí),
左邊=1×2×3+2×3×4+…+k×(k+1)×(k+2)+(k+1)(k+2)(k+3)
|
∴n=k+1時(shí),等式成立.
由(1)、(2)可知,原等式對(duì)于任意n∈N*成立.
n(n+1)(n+2)(n+3) |
4 |
1×2×3×4 |
4 |
k(k+1)(k+2)(k+3) |
4 |
|