則k=f′(1)=-3,
∴切線方程為:y+2=-3(x-1),即3x+y-1=0;
(2)f(x)=ax3-3x2,得到f′(x)=3ax2-6x=3x(ax-2),
∵x=1是f(x)的一個(gè)極值點(diǎn),
∴f′(1)=0即3(a-2)=0,∴a=2;
(3)①當(dāng)a=0時(shí),f(x)=-3x2在區(qū)間(-1,0)上是增函數(shù),則a=0符合題意;
②當(dāng)a≠0時(shí),f′(x)=3ax(x-
2 |
a |
2 |
a |
當(dāng)a>0時(shí),對(duì)任意x∈(-1,0),f′(x)>0,則a>0符合題意;
當(dāng)a<0時(shí),當(dāng)x∈(
2 |
a |
2 |
a |
綜上所述,a≥-2滿足要求.