![](http://hiphotos.baidu.com/zhidao/pic/item/d439b6003af33a878061c4abc55c10385343b577.jpg)
∵四邊形ABCD是矩形,
∴AD⊥CD,
∴△PEA∽△CDA,
∴
PE |
CD |
PA |
CA |
∵AC=BD=
32+42 |
∴
PE |
3 |
PA |
5 |
同理:△PFD∽△BAD,
∴
PF |
AB |
PD |
BD |
∴
PF |
3 |
PD |
5 |
∴①+②得:
PE+PF |
3 |
PA+PD |
5 |
AD |
5 |
4 |
5 |
∴PE+PF=
12 |
5 |
即點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是:
12 |
5 |
故答案為:
12 |
5 |
PE |
CD |
PA |
CA |
32+42 |
PE |
3 |
PA |
5 |
PF |
AB |
PD |
BD |
PF |
3 |
PD |
5 |
PE+PF |
3 |
PA+PD |
5 |
AD |
5 |
4 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |