設(shè)兩個(gè)交點(diǎn)為A(x1,y1),B(x2,y2)聯(lián)立拋物線x2=-2y與直線方程y=2x+b,
消去y,可得x2+4x+2b=0△=16-4?1?2b>0∴b<2 ①
另根據(jù)韋達(dá)定理有:x1+x2=-4 ②
而A(x1,y1),B(x2,y2)都在直線y=2x+b上,可分別代入得到:y1=2x1+b y2=2x2+b
∴y1+y2=2(x1+x2)+2b將②代入上式,可得:y1+y2=2b-8 ③
設(shè)AB的中點(diǎn)M(x,y),可根據(jù)中點(diǎn)坐標(biāo)公式表示為:x=
x1+x2 |
2 |
y=
y1+y2 |
2 |
由條件①:b<2,可得:y=b-4<2-4<-2
∴M點(diǎn)(即動(dòng)弦AB中點(diǎn))的軌跡方程時(shí):x=-2這條直線位于y=-2之下的部分,
即軌跡方程x+2=0(y<-2)
故答案為:x+2=0(y<-2)