1.對任意的x屬于M,都有x+f(x)為增函數(shù)
∵y=x是單調(diào)遞增的
∴f(x)是常值函數(shù)時顯然x+f(x)為增函數(shù)
這樣的f有兩種f(x)=1和f(x)=2
當(dāng)f:是M→N的滿射 又有一種就f:f(2)=1,f(3)=2
綜上可得滿足條件得函數(shù)有3個.
2.f(x)是定義在R是上的奇函數(shù)
∴f(x)=-f(-x)
∴f(x)=-f(4-x)=f(x-4) 即f(x+4)=f(x)
函數(shù)f(x)是以4為周期的周期函數(shù).
∴f(2013)=f(4*503+1)=f(1)
∵x屬于[0,2]時,f(x)=ax-x²
∴f(1)=a-1
因此f(2013)=a-1.第二題其實就是要求a的值 ,答案上很狗血的四個選項,10-12第一題謝謝;啦哦我明白了∵f(x)是奇函數(shù)∴f(-2)=-f(2)又根據(jù)f(x+4)=f(x)∴f(-2+4)=f(2)=f(-2)∴f(2)=0∵f(2)=2a-4=0解得a=2∴f(2013)=f(1)=a-1=1。
1,已知集合M={3,2},n={1,2},函數(shù)f:M→N滿足:對任意的x屬于M,都有x+f(x)為增函數(shù),滿足條件的函數(shù)個數(shù)有多少個?
1,已知集合M={3,2},n={1,2},函數(shù)f:M→N滿足:對任意的x屬于M,都有x+f(x)為增函數(shù),滿足條件的函數(shù)個數(shù)有多少個?
2.設(shè)f(x)是定義在R是上的奇函數(shù),且f(x)=-f(4-x)當(dāng)x屬于[0,2]時,f(x)=ax-x²,則f(2013)等于多少?
2.設(shè)f(x)是定義在R是上的奇函數(shù),且f(x)=-f(4-x)當(dāng)x屬于[0,2]時,f(x)=ax-x²,則f(2013)等于多少?
數(shù)學(xué)人氣:473 ℃時間:2020-01-29 01:49:49
優(yōu)質(zhì)解答
我來回答
類似推薦
- 1.已知函數(shù)f(x2+x+1)=根號(x2-3x-4)(x>=4),求f-1(6).
- 已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),當(dāng)n∈N*時,f(n)∈N*,若f[f(n)]=3n,則f(5)的值等于_.
- 已知關(guān)于x的方程3x平方-5x+a=0的根大于-2但小于0,另一根大于1但小于3,求實數(shù)a的取值范圍.
- 已知函數(shù)f(x)=ax²+(b-3)x+3,x∈[a²-2,a]是偶函數(shù),則a+b=?
- 已知定義在R上的f(x),對任意X,Y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,求證:
- 化學(xué)上說氣體密度比空氣密度略大略小不能用排空氣法收集,氧氣密度略大于空氣卻可以排空氣收集,為什么啊
- 六年級上冊第三單元作文500字
- 一只220V 100W的燈泡接在220V的電路中,求(1)燈絲的電阻,2工作電流3一度電使其
- 寫出下列化學(xué)方程式.
- 為什么南半球西風(fēng)漂流與北半球北太平洋暖流緯度位置差不多,都是自西向東流,為什么一個是寒流一個是暖流?
- 寫一封英文電子郵件
- 2,2,3,3-四甲基丁烷的一氯代物的個數(shù)
猜你喜歡