∵f(x)=log2(1-x)+plog2(1+x)為奇函數(shù),
∴f(-x)=log2[(1+x)(1-x)p]=-f(x)=log2
1 |
(1-x)(1+x )p |
∴
|
∴p=-1.
(2)∵p=-1,
∴f(x)=log2
1-x |
1+x |
∵f(x)>2,
∴
|
解得-1<x<-
3 |
5 |
∴f(x)>2時(shí)x的取值范圍是(-1,-
3 |
5 |
(3)∵f(x)=log2
1-x |
1+x |
∴
1-x |
1+x |
當(dāng)-1<x<0時(shí),
1-x |
1+x |
1-x |
1+x |
∴x?f(x)<0;
當(dāng)x=0時(shí),
1-x |
1+x |
1-x |
1+x |
∴x?f(x)=0;
當(dāng)0<x<1時(shí),
1-x |
1+x |
1-x |
1+x |
∴x?f(x)<0.
綜上所述,x?f(x)≤0.