精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 若對(duì)任意x∈R,y∈R有唯一確定的f (x,y)與之對(duì)應(yīng),則稱f (x,y)為關(guān)于x,y的二元函數(shù). 定義:同時(shí)滿足下列性質(zhì)的二元函數(shù)f (x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”: (Ⅰ)非負(fù)性:

    若對(duì)任意x∈R,y∈R有唯一確定的f (x,y)與之對(duì)應(yīng),則稱f (x,y)為關(guān)于x,y的二元函數(shù).
    定義:同時(shí)滿足下列性質(zhì)的二元函數(shù)f (x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
    (Ⅰ)非負(fù)性:f (x,y)≥0;
    (Ⅱ)對(duì)稱性:f (x,y)=f (y,x);
    (Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)對(duì)任意的實(shí)數(shù)z均成立.
    給出下列二元函數(shù):
    ①f (x,y)=(x-y)2;
    ②f (x,y)=|x-y|;
    ③f (x,y)=
    x?y

    ④f (x,y)=|sin(x-y)|.
    則其中能夠成為關(guān)于x,y的廣義“距離”的函數(shù)編號(hào)是______.(寫出所有真命題的序號(hào))
    數(shù)學(xué)人氣:191 ℃時(shí)間:2020-01-31 19:11:44
    優(yōu)質(zhì)解答
    對(duì)于②④中的函數(shù),滿足(Ⅰ)和(Ⅱ)和(Ⅲ),能夠成為關(guān)于x,y的廣義“距離”的函數(shù).
    對(duì)于①中的函數(shù),由于不滿足(Ⅲ),不能夠成為關(guān)于x,y的廣義“距離”的函數(shù).
    對(duì)于③中的函數(shù),因?yàn)椴粷M足(Ⅱ)對(duì)稱性,不能夠成為關(guān)于x,y的廣義“距離”的函數(shù).
    故答案為:②④.
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版