兩式相減得:(an+1-an)=2(an-an-1).
∵bn=an+1-an,
∴bn=2bn-1.
又b1=a2-a1=(2a1+1)-a1=a1+1=2.
∴數(shù)列{bn}是以2為首項(xiàng),以2為公比等比數(shù)列;
(2)由(1)得bn=2n,即an+1?an=2n,
∴an=a1+(a2?a1)+(a3?a2)+…+(a n?an?1)=1+2+22+…2n?1=2n?1,
∴nan=n?2n?n,
∴Sn=(1?21?1)+(2?22?1)+…+(n?2n?n)=(1?21+2?22+…+n?2n)?
n(n+1) |
2 |
令T=1?21+2?22+…+n?2n ①,
則2T=1?22+2?23+…+(n-1)?2n+n?2n+1 ②,
①-②得:-T=-2+2n+1-n?2n+1,
∴T=(n-1)?2n+1+2,
∴Sn=(n?1)?2n+1+2?
n(n+1) |
2 |
由Sn+
n(n+1) |
2 |
即(n-1)?2n+1>118,
∵當(dāng)n∈N+時(shí),(n-1)?2n+1單調(diào)遞增,
∴正整數(shù)n的最小取值為5.