1 |
2 |
(2)過點A作AM⊥x軸于M,則OM=AM=2;
∵OD=t,
∴OE=2t,ME=2t-2,EF=t;
由于EF∥AM,則有△BEF∽△BMA,得:
BE |
BM |
EF |
AM |
BE |
BE+2t-2 |
t |
2 |
解得:BE=
2t2-2t |
2-t |
故OB=OE+BE=2t+
2t2-2t |
2-t |
2t |
2-t |
(3)本題分兩種情況:
①∠FOE=∠FBE,則有△BFE≌△OFE
∴OE=BE=2t
∴OB=4t=
2t |
2-t |
解得t=
3 |
2 |
②∠OFE=∠FBE,由于△BFE∽△OFE,可得:
EF2=OE?BE,即t2=2t?BE,
∴BE=
t |
2 |
∴OB=OE+BE=2t+
1 |
2 |
5 |
2 |
∴OB=
2t |
2-t |
5 |
2 |
解得t=
6 |
5 |
綜上所述,當(dāng)t=
6 |
5 |
3 |
2 |