當(dāng)n≥2時(shí),an=Sn-Sn-1=pn2-2n+q-[p(n-1)2-2(n-1)+q]=(2n-1)p-2
∴a2=3p-2,
a3=5p-2,
∵數(shù)列{an}為等差數(shù)列,
∴2a2=a1+a3,即2(3p-2)=p-2+q+5p-2,解得q=0.
(2)∵a1與a5的等差中項(xiàng)為18,∴a1+a5=2×18,∴a3=18,
∴5p-2=18,解得p=4.
∴an=4(2n-1)-2=8n-6.
∵bn滿足an=2log2bn,
∴8n-6=2log2bn,解得bn=24n?3.
∴數(shù)列的{bn}是等比數(shù)列,首項(xiàng)b1=2,公比q=24=16.
∴數(shù)列的{bn}前n項(xiàng)和Tn=
2(16n?1) |
16?1 |
2 |
15 |