精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • ∫y^2ds(積分區(qū)域為L),其中L為擺線的一拱x=a(t-sint),y=a(1-cost),(0

    ∫y^2ds(積分區(qū)域為L),其中L為擺線的一拱x=a(t-sint),y=a(1-cost),(0
    數(shù)學(xué)人氣:937 ℃時間:2020-07-14 06:40:12
    優(yōu)質(zhì)解答
    證明:
    (1)
    a(n+1)=an+√((an)^2+1)
    a(n+1)=tan(θ(n+1))
    an+√((an)^2+1)=tan(θn)+√(tan^2(θn)+1)=tan(θn)+1/(cos(θn))
    =(sin(θn)+1)/(cos(θn))
    =(sin(θn)+sin^2(θn/2)+cos^2(θn/2))/(cos(θn))
    =(2*sin(θn/2)*cos(θn/2)+sin^2(θn/2)+cos^2(θn/2))/(cos^2(θn/2)-sin^2(θn/2))
    =(sin(θn/2)+cos(θn/2))^2/((sin(θn/2)+cos(θn/2))(cos(θn/2)-sin(θn/2)))
    =(sin(θn/2)+cos(θn/2))/(cos(θn/2)-sin(θn/2)))
    =(tan(θn/2)+1)/(1-tan(θn/2))
    =tan(θn/2+π/4)
    即θ(n+1)=θn/2+π/4
    θ(n+1)-π/2=(1/2)*(θn-π/2)
    故是等比數(shù)列
    得證
    (2)
    a1=tan(θ1)=1
    0<θn<π/2
    θ1=π/4
    θ1-π/2=-π/4
    θn-π/2=-(1/2)^(n-1)*π/4=-π/(2^(n+1))
    θn=π/2-π/(2^(n+1))
    θ1+θ2+…+θn=n*π/2-(π/4)*(2-1/(2^(n-1)))=(n-1)*π/2+(π/4)*1/(2^(n-1))>(n-1)*π/2
    由0<θn<π/2
    tan(θn)>θn
    a1+a2+…+an=tan(θ1)+tan(θ2)+…+tan(θn)>θ1+θ2+…+θn>(n-1)*π/2
    得證
    另外,虛機團上產(chǎn)品團購,超級便宜
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版