精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如圖.等腰直角三角形ABC中,∠A=90°,P為BC的中點(diǎn),小明拿著含45°角的透明三角形,使45°角的頂點(diǎn)落在點(diǎn)P,且繞P旋轉(zhuǎn). (1)如圖①:當(dāng)三角板的兩邊分別AB、AC交于E、F點(diǎn)時(shí),試說(shuō)明△BPE

    如圖.等腰直角三角形ABC中,∠A=90°,P為BC的中點(diǎn),小明拿著含45°角的透明三角形,使45°角的頂點(diǎn)落在點(diǎn)P,且繞P旋轉(zhuǎn).

    (1)如圖①:當(dāng)三角板的兩邊分別AB、AC交于E、F點(diǎn)時(shí),試說(shuō)明△BPE∽△CFP.
    (2)將三角板繞點(diǎn)P旋轉(zhuǎn)到圖②,三角板兩邊分別交BA延長(zhǎng)線和邊AC于點(diǎn)EF.
    探究1:△BPE與△CFP.還相似嗎?(只需寫(xiě)結(jié)論)
    探究2:連接EF,△BPE與△EFP是否相似?請(qǐng)說(shuō)明理由.
    數(shù)學(xué)人氣:996 ℃時(shí)間:2019-11-23 08:49:05
    優(yōu)質(zhì)解答
    (1)證明:∵在△ABC中,∠BAC=90°,AB=AC,
    ∴∠B=∠C=45°.
    ∵∠B+∠BPE+∠BEP=180°,
    ∴∠BPE+∠BEP=135°,
    ∵∠EPF=45°,
    又∵∠BPE+∠EPF+∠CPF=180°,
    ∴∠BPE+∠CPF=135°,
    ∴∠BEP=∠CPF,
    又∵∠B=∠C,
    ∴△BPE∽△CFP(兩角對(duì)應(yīng)相等的兩個(gè)三角形相似).
    (2)探究1:△BPE與△CFP還相似,
    探究2:證明:連接EF,△BPE與△CFP相似,
    ∵△BPE∽△CFP,
    BE
    CP
    PE
    FP

    又∵CP=BP,
    BE
    BP
    PE
    FP

    BE
    PE
    BP
    FP
    ,
    又∵∠B=∠EPF,
    ∴△BPE∽△EFP.
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版