2 |
當(dāng)x=0時,y=-
2 |
2 |
所以A(-
2 |
∵C(0,-
2 |
∴OA=OC,
∵OA⊥OC,
∴∠CAO=45°.
(2)如圖,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,
此時,直線l旋轉(zhuǎn)到l1恰好與⊙B1第一次相切于點(diǎn)P,⊙B1與x軸相切于點(diǎn)N,連接B1O,B1N.
則MN=t,OB1=
2 |
∴ON=1,
∴MN=3,即t=3.
連接B1A,B1P,則B1P⊥AP,B1P=B1N,
∴∠PAB1=∠NAB1.
∵OA=OB1=
2 |
∴∠AB1O=∠NAB1.
∴∠PAB1=∠AB1O.
∴PA∥B1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,
∴∠1=90°.
∴直線AC繞點(diǎn)A平均每秒旋轉(zhuǎn)90°÷3=30°.
(3)能,假設(shè)⊙B與⊙O第二次相切時⊙B的圓心為B2,作B2E⊥AC于E,作OH⊥AC于H.
∵△OAC為等腰直角三角形,且OA=OC=
2 |
∴根據(jù)勾股定理得到AC=2,
又∵OH⊥AC,
∴OH為斜邊AC上的中線,
∴OH=
1 |
2 |
∴OH=B2E=1,
∵B2E⊥l,OH⊥l,
∴B2E∥OH,
故此時⊙B與圓0與直線l同時相切.