精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 不定積分xdx/根號下x^2+2x+2=

    不定積分xdx/根號下x^2+2x+2=
    數(shù)學(xué)人氣:975 ℃時(shí)間:2020-01-30 01:20:06
    優(yōu)質(zhì)解答
    ∫[x/√(x^2+2x+2)]dx
    =∫{[(x+1)-1]/√[(x+1)^2+1]}dx
    =∫{(x+1)/√[(x+1)^2+1]}dx-∫{1/√[(x+1)^2+1]}dx
    =(1/2)∫{1/√[(x+1)^2+1]}d[(x+1)^2+1]-∫{1/√[(x+1)^2+1]}dx
    =∫d{√[(x+1)^2+1]}-∫{1/√[(x+1)^2+1]}dx
    =√[(x+1)^2+1]-∫{1/√[(x+1)^2+1]}dx
    =√(x^2+2x+2)-∫{1/√[(x+1)^2+1]}dx.
    令x+1=tanu,則:dx=[1/(cosu)^2]du.
    ∴∫[x/√(x^2+2x+2)]dx
    =√(x^2+2x+2)-∫{1/√[(tanu)^2+1]}[1/(cosu)^2]du
    =√(x^2+2x+2)-∫[cosu/(cosu)^2]du
    =√(x^2+2x+2)-∫{1/[(1+sinu)(1-sinu)]}d(sinu)
    =√(x^2+2x+2)-(1/2)∫[1/(1+sinu)+1/(1-sinu)]d(sinu)
    =√(x^2+2x+2)-(1/2)∫[1/(1+sinu)]d(sinu)-(1/2)∫[1/(1-sinu)]d(sinu)
    =√(x^2+2x+2)-(1/2)ln(1+sinu)+(1/2)ln(1-sinu)+C
    =√(x^2+2x+2)+(1/2)ln{1+tanu/√[(tanu)^2+1]}
    ?。?/2)ln{1-tanu/√[(tanu)^2+1]}+C
    =√(x^2+2x+2)+(1/2)ln{√[(tanu)^2+1]+tanu}
    ?。?/2)ln{√[(tanu)^2+1]-tanu}+C
    =√(x^2+2x+2)+(1/2)ln{√[(x+1)^2+1]+x+1}
    ?。?/2)ln{√[(x+1)^2+1]-x-1}+C
    =√(x^2+2x+2)+(1/2)ln{[√(x^2+2x+2)+x+1]^2}+C
    =√(x^2+2x+2)+ln[√(x^2+2x+2)+x+1]+C.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版