精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知函數(shù)f(x)=x²+2ax+1,x∈[-1,2](1)求函數(shù)f(x)的最大值;(2)若f(x)的最大值為4,求a的值.

    已知函數(shù)f(x)=x²+2ax+1,x∈[-1,2](1)求函數(shù)f(x)的最大值;(2)若f(x)的最大值為4,求a的值.
    數(shù)學(xué)人氣:900 ℃時(shí)間:2019-09-18 05:29:53
    優(yōu)質(zhì)解答
    第一問(wèn) 需要分類討論的 分三種
    先得出二次函數(shù)的對(duì)稱軸
    1.在區(qū)間左 2.在區(qū)間內(nèi) 3.在區(qū)間內(nèi)
    再結(jié)合單調(diào)性找出最大值
    第二問(wèn)
    在第一問(wèn)基礎(chǔ)上依舊分三種情況
    得出a的值
    但切記 要檢驗(yàn)當(dāng)a取最大值時(shí) x的值是否符合所給定義域?qū)W過(guò)導(dǎo)數(shù)么?o 那就算了 用常規(guī)解法第一問(wèn)由題意可知 該函數(shù)開(kāi)口向上 所以對(duì)稱軸右側(cè)單增 左側(cè)單減對(duì)稱軸x=-a 當(dāng)-a∈(-∞,-1】時(shí)函數(shù)在此區(qū)間單增 所以x在-1處取得最大值 把x=-1代入函數(shù)解析式 得最大值為2-a同理當(dāng)-a∈(-1,2)時(shí) 當(dāng)-a∈【2,+∞)時(shí)求出各自的最大值第二問(wèn)當(dāng)-a∈(-∞,-1】時(shí) 讓最大值等于4 則能求出a同理......有些數(shù)學(xué)語(yǔ)言電腦不好表達(dá) 所以見(jiàn)諒啊
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版