(Ⅰ)求導(dǎo)函數(shù),可得f'(x)=a-sinx,x∈[0,π],sinx∈[0,1];
當(dāng)a≤0時,f'(x)≤0恒成立,f(x)單調(diào)遞減;當(dāng)a≥1 時,f'(x)≥0恒成立,f(x)單調(diào)遞增;
當(dāng)0<a<1時,由f'(x)=0得x
1=arcsina,x
2=π-arcsina
當(dāng)x∈[0,x
1]時,sinx<a,f'(x)>0,f(x)單調(diào)遞增
當(dāng)x∈[x
1,x
2]時,sinx>a,f'(x)<0,f(x)單調(diào)遞減
當(dāng)x∈[x
2,π]時,sinx<a,f'(x)>0,f(x)單調(diào)遞增
當(dāng)x∈[0,arcsina]時,單調(diào)遞增,當(dāng)x∈[arcsina,π]時,單調(diào)遞減;
(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ-1≤1,∴a≤
.
令g(x)=sinx-
x(0≤x
≤),則g′(x)=cosx-
當(dāng)x
∈(0,arccos)時,g′(x)>0,當(dāng)
x∈(arccos,)時,g′(x)<0
∵
g(0)=g()=0,∴g(x)≥0,即
x≤sinx(0≤x
≤),
當(dāng)a≤
時,有
f(x)≤x+cosx①當(dāng)0≤x
≤時,
x≤sinx,cosx≤1,所以f(x)≤1+sinx;
②當(dāng)
≤x≤π時,
f(x)≤x+cosx=1+
(x?)?sin(x?)≤1+sinx
綜上,a≤
.