∵a3=-6,a6=0,∴
|
所以an=-10+(n-1)?2=2n-12;
(Ⅱ)設(shè)等比數(shù)列{bn}的公比為q,
∵b2=a1+a2+a3=-10+(-8)+(-6)=-24,b1=-8,
∴-8q=-24,解得q=3,
所以bn=(?8)3n?1,
則anbn=(2n-12)?(-8)?3n-1=-16(n-6)3n-1,
設(shè){bn}的前n項和為Sn,則Sn=?16[?5?30?4?3?3?32-…+(n-6)?3n-1],
3Sn=-16[-5?3-4?32-3?33-…+(n-6)?3n],
兩式相減得,-2Sn=-16[-5+3+32+…+3n-1-(n-6)?3n]
=-16[-5+
3(1?3n?1) |
1?3 |
解得Sn=-8[
13 |
2 |
13 |
2 |