![](http://hiphotos.baidu.com/zhidao/pic/item/8644ebf81a4c510f5cbc12a86359252dd42aa50c.jpg)
∴BA=BE,∠ABE=60°.
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN.
即∠MBA=∠NBE.
又∵M(jìn)B=NB,
∴△AMB≌△ENB(SAS).
(2) ①當(dāng)M點(diǎn)落在BD的中點(diǎn)時(shí),A、M、C三點(diǎn)共線,AM+CM的值最?。?br />②如圖,連接CE,當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),
AM+BM+CM的值最?。?br />理由如下:連接MN,由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
根據(jù)“兩點(diǎn)之間線段最短”,得EN+MN+CM=EC最短
∴當(dāng)M點(diǎn)位于BD與CE的交點(diǎn)處時(shí),AM+BM+CM的值最小,即等于EC的長(zhǎng).
(3) 過(guò)E點(diǎn)作EF⊥BC交CB的延長(zhǎng)線于F,
![](http://hiphotos.baidu.com/zhidao/pic/item/8644ebf81a4c510f5cbc12a86359252dd42aa50c.jpg)
∴∠EBF=∠ABF-∠ABE=90°-60°=30°.
設(shè)正方形的邊長(zhǎng)為x,則BF=
| ||
2 |
x |
2 |
在Rt△EFC中,
∵EF2+FC2=EC2,
∴(
x |
2 |
| ||
2 |
3 |
解得,x1=
2 |
2 |
∴正方形的邊長(zhǎng)為
2 |