1 |
x+1 |
當a>0時,f′(x)>0,
∴f(x)在(0,+∞)上是增函數(shù);
當a<0時,由f′(x)>0得?1<x<?
1 |
a |
1 |
a |
∴函數(shù)f(x)在(?1,?
1 |
a |
1 |
a |
(Ⅱ)a=1時,f(x)=ln(x+1)+x
要證x∈[1,2]時,f(x)?3<
1 |
x |
即證明ln(x+1)+x-
1 |
x |
令g(x)=ln(x+1)+x-
1 |
x |
∵g(1)=0,
則g(x)≥0
∴x∈[1,2]時,f(x)?3<
1 |
x |
1 |
x |
1 |
x+1 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
x |
1 |
x |
1 |
x |
1 |
x |