(1)tanA+tanB+tanAtanB+1=2,即tanA+tanB=1-tanAtanB,
∵1-tanAtanB≠0,
∴tan(A+B)=
tanA+tanB |
1-tanAtanB |
即tanC=tan[π-(A+B)]=-tan(A+B)=-1,
∵C∈(0,π),∴C=
3π |
4 |
(2)由余弦定理a2+b2-2abcosC=c2得:
a2+b2+2×
| ||
2 |
2 |
而4-
2 |
2 |
所以S△ABC=
1 |
2 |
| ||
4 |
| ||
4 |
2 |
2 |
tanA+tanB |
1-tanAtanB |
3π |
4 |
| ||
2 |
2 |
2 |
2 |
1 |
2 |
| ||
4 |
| ||
4 |
2 |
2 |