不定積分
設F(x)為函數(shù)f(x)的一個原函數(shù),我們把函數(shù)f(x)的所有原函數(shù)F(x)+C(C為任意常數(shù))叫做函數(shù)f(x)的不定積分.
記作∫f(x)dx.
其中∫叫做積分號,f(x)叫做被積函數(shù),x叫做積分變量,f(x)dx叫做被積式,C叫做積分常數(shù),求已知函數(shù)的不定積分的過程叫做對這個函數(shù)進行積分.
由定義可知:
求函數(shù)f(x)的不定積分,就是要求出f(x)的所有的原函數(shù),由原函數(shù)的性質可知,只要求出函數(shù)f(x)的一個原函數(shù),再加上任意的常數(shù)C,就得到函數(shù)f(x)的不定積分.
也可以表述成,積分是微分的逆運算,即知道了導函數(shù),求原函數(shù).
定積分
眾所周知,微積分的兩大部分是微分與積分.微分實際上是求一函數(shù)的導數(shù),而積分是已知一函數(shù)的導數(shù),求這一函數(shù).所以,微分與積分互為逆運算.
實際上,積分還可以分為兩部分.第一種,是單純的積分,也就是已知導數(shù)求原函數(shù),而若F(x)的導數(shù)是f(x),那么F(x)+C(C是常數(shù))的導數(shù)也是f(x),也就是說,把f(x)積分,不一定能得到F(x),因為F(x)+C的導數(shù)也是f(x),C是無窮無盡的常數(shù),所以f(x)積分的結果有無數(shù)個,是不確定的,我們一律用F(x)+C代替,這就稱為不定積分.
而相對于不定積分,就是定積分.
所謂定積分,其形式為∫f(x) dx (上限a寫在∫上面,下限b寫在∫下面).之所以稱其為定積分,是因為它積分后得出的值是確定的,是一個數(shù),而不是一個函數(shù).
定積分的正式名稱是黎曼積分,詳見黎曼積分.用自己的話來說,就是把直角坐標系上的函數(shù)的圖象用平行于y軸的直線和x軸把其分割成無數(shù)個矩形,然后把某個區(qū)間[a,b]上的矩形累加起來,所得到的就是這個函數(shù)的圖象在區(qū)間[a,b]的面積.實際上,定積分的上下限就是區(qū)間的兩個端點a、b.
我們可以看到,定積分的本質是把圖象無限細分,再累加起來,而積分的本質是求一個函數(shù)的原函數(shù).它們看起來沒有任何的聯(lián)系,那么為什么定積分寫成積分的形式呢?
定積分與積分看起來風馬牛不相及,但是由于一個數(shù)學上重要的理論的支撐,使得它們有了本質的密切關系.把一個圖形無限細分再累加,這似乎是不可能的事情,但是由于這個理論,可以轉化為計算積分.這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內(nèi)容是:
若F'(x)=f(x)
那么∫f(x) dx (上限a下限b)=F(a)-F(b)
但是這里x出現(xiàn)了兩種意義,一是表示積分上限,二是表示被積函數(shù)的自變量,但定積分中被積函數(shù)的自變量取一個定值是沒意義的.雖然這種寫法是可以的,但習慣上常把被積函數(shù)的自變量改成別的字母如t,這樣意義就非常清楚了:
Φ(x)= x(上限)∫a(下限)f(t)dt
牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函數(shù)的值與下限在原函數(shù)的值的差.
正這個理論揭示了積分與黎曼積分本質的聯(lián)系,可見其在微積分學乃至整個高等數(shù)學上的重要地位,因此,牛頓-萊布尼茲公式也被稱作微積分基本定理.
微積分
積分是微分的逆運算,即知道了函數(shù)的導函數(shù),反求原函數(shù).在應用上,積分作用不僅如此,它被大量應用于求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的.
一個函數(shù)的不定積分(亦稱原函數(shù))指另一族函數(shù),這一族函數(shù)的導函數(shù)恰為前一函數(shù).
其中:[F(x) + C]' = f(x)
一個實變函數(shù)在區(qū)間[a,b]上的定積分,是一個實數(shù).它等于該函數(shù)的一個原函數(shù)在b的值減去在a的值.
積分 integral 從不同的問題抽象出來的兩個數(shù)學概念.定積分和不定積分的統(tǒng)稱.不定積分是為解決求導和微分的逆運算而提出的.例如:已知定義在區(qū)間I上的函數(shù)f(x),求一條曲線y=F(x),x∈I,使得它在每一點的切線斜率為F′(x)= f(x).函數(shù)f(x)的不定積分是f(x)的全體原函數(shù)(見原函數(shù)),記作 .如果F(x)是f(x)的一個原函數(shù),則 ,其中C為任意常數(shù).例如,定積分是以平面圖形的面積問題引出的.y=f(x)為定義在[a,b〕上的函數(shù),為求由x=a,x=b ,y=0和y=f(x)所圍圖形的面積S,采用古希臘人的窮竭法,先在小范圍內(nèi)以直代曲,求出S的近似值,再取極限得到所求面積S,為此,先將[a,b〕分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi〕,記Δxi=xi-xi-1,則pn為S的近似值,當n→+∞時,pn的極限應可作為面積S.把這一類問題的思想方法抽象出來,便得定積分的概念:對于定義在[a,b〕上的函數(shù)y=f(x),作分劃a=x0<x1<…<xn=b,若存在一個與分劃及ζi∈[xi-1,xi〕的取法都無關的常數(shù)I,使得,其中則稱I為f(x)在[a,b〕上的定積分,表為即 稱[a,b〕為積分區(qū)間,f(x)為被積函數(shù),a,b分別稱為積分的上限和下限.當f(x)的原函數(shù)存在時,定積分的計算可轉化為求f(x)的不定積分:這是c牛頓萊布尼茲公式.
定積分,不定積分…微積分各是什么啊?有什么區(qū)別
定積分,不定積分…微積分各是什么啊?有什么區(qū)別
數(shù)學人氣:512 ℃時間:2020-05-10 18:33:01
優(yōu)質解答
我來回答
類似推薦
- 定積分和微積分有什么區(qū)別?
- 什么叫積分,什么叫微積分,什么叫定積分,什么叫不定積分,有什么聯(lián)系和區(qū)別
- 定積分跟微積分有什么不同
- 微積分,定、不定積分,有什么不同?
- 定積分,不定積分,微積分,的關系
- 陳蕃的“蕃”在這里的讀音是什么?
- But the one million people of the city,who thought little of these events,were asleep as usual that
- 線粒體的氧化磷酸化和葉綠體的光合磷酸化有什么共同點和不同點?
- 一個含30度角的直角三角形能否分割成2個全等的三角形
- 設f(x)=√x,g(x)=-x+a(a>0,a∈R),若不等式▏{f(x)+a[g(x)-2a]}/f(x)▕ ≤1對x∈[1,4]恒成立,求a的取值范圍.小弟拜謝!
- 熱帶魚最適合的溫度是幾度?
- 有關圓周率的知識
猜你喜歡
- 1用120個邊長是1cm的正方形,可以擺出 種面積是120平方厘米的長方形.
- 2m為何值時,方程組y=x+my2?4x?2y+1=0 (1)有兩組不相等的實數(shù)解; (2)有相同的兩組實數(shù)解; (3)無實數(shù)解.
- 3初一語文(下)主要復習什么?
- 4腦筋急轉彎:.How can you make a rope shorter without cutting or winding it?
- 5一根跳繩長五分之四米,這根跳繩的四分之三有多長?怎么算?
- 6人們在大自然中受到過哪些啟發(fā),有什么發(fā)明創(chuàng)造
- 7為什么before后面加being given而不是giving
- 8不要把污水直接排入河流英文怎么說
- 9兩個同體積的容器一個裝HCl氣體另一裝H2和CL2的混合氣體同溫同壓下,一定相同的是.
- 10五星村共有小麥的320公頃,玉米地比小麥地多1/4,這個村的玉米地比小麥地多多少公頃?玉米地有多少公頃?
- 11老外口中的的she average是什么意思
- 12大什么大什么,要成語的.