精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 已知數(shù)列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),數(shù)列Bn滿足Bn=1/An

    已知數(shù)列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),數(shù)列Bn滿足Bn=1/An
    求數(shù)列Bn的通項公式
    求數(shù)列{an/n}的前n項和Tn,并證明Tn
    數(shù)學(xué)人氣:595 ℃時間:2019-11-13 05:40:22
    優(yōu)質(zhì)解答
    a(n+1)a(n) = a(n) - a(n+1),
    若a(n+1)=0,則a(n)=0,...,a(1)=0,與a(1)=1/3矛盾.
    因此,a(n)不為0.
    1 = 1/a(n+1) - 1/a(n),
    1/a(n+1) = 1/a(n) + 1,
    {b(n)=1/a(n)}是首項為1/a(1)=3,公差為1的等差數(shù)列.
    b(n)=1/a(n) = 3 + (n-1) = n+2.
    a(n) = 1/(n+2),
    c(n) = a(n)/n = 1/[n(n+2)] = (n+1)/[n(n+1)(n+2)] = [(n+2) - 1]/[n(n+1)(n+2)] = 1/[n(n+1)] - 1/[n(n+1)(n+2)],
    =1/n - 1/(n+1) - (1/2){ 1/[n(n+1)] - 1/[(n+1)(n+2)] }
    t(n) = c(1)+c(2)+...+c(n-1)+c(n)
    = 1/1-1/2 + 1/2-1/3 + ...+ 1/(n-1)-1/n + 1/n-1/(n+1)-(1/2){1/[1*2]-1/[2*3] + 1/[2*3]-1/[3*4] + ...+ 1/[(n-1)n]-1/[n(n+1)] + 1/[n(n+1)] - 1/[(n+1)(n+2)] }
    = 1/1 - 1/(n+1) - (1/2){ 1/[1*2] - 1/[(n+1)(n+2)] }
    =1 - 1/(n+1) - 1/4 + 1/[2(n+1)(n+2)]
    = 3/4 + [1-2(n+2)]/[2(n+1)(n+2)]
    = 3/4 - (2n+3)/[2(n+1)(n+2)]
    < 3/4 - (2n+2)/[(2n+2)(n+2)]
    = 3/4 - 1/(n+2)
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版