| ||
10 |
2
| ||
5 |
因?yàn)棣翞殇J角,則sinα>0,從而sinα=
1?cos2α |
7
| ||
10 |
同理可得sinβ=
1?cos2β |
| ||
5 |
因此tanα=7,tanβ=
1 |
2 |
所以tan(α+β)=
tanα+tanβ |
1?tanα?tanβ |
7+
| ||
1?7×
|
(2)tan(α+2β)=tan[(α+β)+β]=
?3+
| ||
1?(?3)×
|
又0<α<
π |
2 |
π |
2 |
3π |
2 |
所以由tan(α+2β)=-1得α+2β=
3π |
4 |
| ||
10 |
2
| ||
5 |
| ||
10 |
2
| ||
5 |
1?cos2α |
7
| ||
10 |
1?cos2β |
| ||
5 |
1 |
2 |
tanα+tanβ |
1?tanα?tanβ |
7+
| ||
1?7×
|
?3+
| ||
1?(?3)×
|
π |
2 |
π |
2 |
3π |
2 |
3π |
4 |