則有ax2+bx+3=-x2+3x+2,得:(a+1)x2+(b-3)x+1=0.
∵兩交點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),那么兩個(gè)橫坐標(biāo)的值互為相反數(shù);兩個(gè)縱坐標(biāo)的值也互為相反數(shù).
則兩根之和為:-
b?3 |
a+1 |
1 |
a+1 |
解得b=3,a<-1.
設(shè)兩個(gè)交點(diǎn)坐標(biāo)為(x1,y1),(x2,y2).
這兩個(gè)根都適合第二個(gè)函數(shù)解析式,那么y1+y2=-(x12+x22)+3 (x1+x2)+4=0,
∵x1+x2=0,
∴y1+y2=-(x1+x2)2+2x1x2+4=0,
解得x1x2=-2,
代入兩根之積得
1 |
a+1 |
解得a=-
3 |
2 |
故a=-
3 |
2 |
另法:(若交點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),那么在y=-x2+3x+2中,必定自身存在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),設(shè)這兩個(gè)點(diǎn)橫坐標(biāo)分別為k和-k,直接在y=-x2+3x+2代入k,然后相加兩個(gè)式子-k2+3k+2=0與-k2-3k+2=0,可得出k為±
2 |