∴f′(x)=2x-
1 |
x |
∴f'(1)=1.
又∵f(1)=1,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y-1=x-1.即x-y=0.
(2)因?yàn)楹瘮?shù)f(x)=2x2-lnx的定義域?yàn)椋?,+∞),
由f′(x)=2x-
1 |
x |
| ||
2 |
所以函數(shù)f(x)=x2-lnx的單調(diào)遞減區(qū)間是(0,
| ||
2 |
(3)∵g(x)=ax-lnx,∴g′(x)=
ax?1 |
x |
1 |
a |
①當(dāng)
1 |
a |
1 |
e |
ax?1 |
x |
則g(x)在(0,e]上單調(diào)遞減,g(x)min=g(e)=ae-1=3,a=
4 |
e |
②當(dāng)0<
1 |
a |
1 |
e |
![](http://hiphotos.baidu.com/zhidao/pic/item/c75c10385343fbf22b6c54a0b37eca8064388ff5.jpg)
由表知,g(x)min=g(
1 |
a |
綜上,所求實(shí)數(shù)a=e2,使得當(dāng)x∈(0,e]時(shí)g(x)有最小值3.