![](http://hiphotos.baidu.com/zhidao/pic/item/d53f8794a4c27d1e82be717218d5ad6edcc438ef.jpg)
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE
∴∠BAC=∠DAE
又∵AB=AD,∠ACB=∠E=90°
∴△ABC≌△ADE(AAS)
∴BC=DE,AC=AE,
設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得,
CF2+DF2=CD2,即(3a)2+(4a)2=x2,
解得:a=
x |
5 |
∴y=S四邊形ABCD=S梯形ACDE=
1 |
2 |
=
1 |
2 |
=10a2
=
2 |
5 |
故選C.