即a+b+c=-a,
∴c=-2a-b,
即b+c=-2a;
又∵a>2c>3b,
∴-2a=b+c<
a |
3 |
a |
2 |
5a |
6 |
即
5a |
6 |
∴a>0;
又∵a>2c,
即a>2(-2a-b),
∴a>-4a-2b
即5a>-2b,
∴
b |
a |
5 |
2 |
∵2c>3b,
∴2(-2a-b)>3b,
即-4a-2b>3b,
∴-4a>5b,
∴
b |
a |
4 |
5 |
∴-
5 |
2 |
b |
a |
4 |
5 |
即
b |
a |
5 |
2 |
4 |
5 |
故答案為:(-
5 |
2 |
4 |
5 |
b |
a |
a |
3 |
a |
2 |
5a |
6 |
5a |
6 |
b |
a |
5 |
2 |
b |
a |
4 |
5 |
5 |
2 |
b |
a |
4 |
5 |
b |
a |
5 |
2 |
4 |
5 |
5 |
2 |
4 |
5 |