求導(dǎo)函數(shù),可得f'(x)=lnx+1.…(1分)
令f'(x)≥0,得lnx≥-1=lne-1,x≥lne?1=
1 |
e |
令f'(x)≤0,得x∈(0,
1 |
e |
∴f(x)的單調(diào)遞增區(qū)間是[
1 |
e |
1 |
e |
∴函數(shù)的極小值為f(
1 |
e |
1 |
e |
(2)g(x)=xlnx-k(x-1),則g'(x)=lnx+1-k,由g'(x)=0,得x=ek-1,
所以,在區(qū)間(0,ek-1)上,g(x)為遞減函數(shù),在區(qū)間(ek-1,+∞)上,g(x)為遞增函數(shù).…(8分)
當(dāng)ek-1≤1,即k≤1時(shí),在區(qū)間[1,e]上,g(x)為遞增函數(shù),
所以,g(x)最大值為g(e)=e-ke+k.…(10分)
當(dāng)1<ek-1<e,即1<k<2時(shí),g(x)的最大值是g(1)或g(e)g(1)=g(e),得k=
e |
e?1 |
當(dāng)1<k<
e |
e?1 |
當(dāng)
e |
e?1 |
當(dāng)ek-1≥e,即k≥2時(shí),在區(qū)間[1,e]上,g(x)為遞減函數(shù),
所以g(x)最大值為g(1)=0.
綜上,當(dāng)k<
e |
e?1 |
e |
e?1 |