已知α+β=1,αβ=-1.設S1=α+β,S2=α2+β2,S3=α3+β3,…,Sn=αn+βn (1)計算:S1=_,S2=_,S3=_,S4=_; (2)試寫出Sn-2、Sn-1、Sn三者之間的關系; (3)根據(jù)以上得出結論計算:α
已知α+β=1,αβ=-1.設S1=α+β,S2=α2+β2,S3=α3+β3,…,Sn=αn+βn
(1)計算:S1=______,S2=______,S3=______,S4=______;
(2)試寫出Sn-2、Sn-1、Sn三者之間的關系;
(3)根據(jù)以上得出結論計算:α7+β7.
數(shù)學人氣:980 ℃時間:2020-03-31 20:05:55
優(yōu)質(zhì)解答
(1)∵α+β=1,αβ=-1.
∴S
1=α+β=1.
S
2=α
2+β
2=(α+β)
2-2αβ=1+2=3.
S
3=α
3+β
3=(α+β)(α
2-αβ+β
2)=(α+β)
2-3αβ=1+3=4.
S
4=α
4+β
4=(α
2+β
2)
2-2α
2β
2=9-2=7.
故答案為:1,3,4,7;
(2)由(1)得:S
n=S
n-1+S
n-2.
證明:∵α,β是方程x
2-x-1=0的兩根,
∴有:α
2=α+1,β
2=β+1,
S
n-1+S
n-2=α
n-1+β
n-1+α
n-2+β
n-2=
+
+
+
=
+
=α
n+β
n=S
n.
故S
n=S
n-1+S
n-2.
(3)由(2)有:
α
7+β
7=S
7=S
6+S
5=S
5+S
4+S
4+S
3=S
4+S
3+2S
4+S
3=3S
4+2S
3=3×7+2×4
=29.
我來回答
類似推薦
- 已知a+b=1ab=-1,設S1=a+b,S2=a^2+b^2,S3=a^3+b^3……SN=a^n+b^n
- 已知a+b=1,ab=-1,設S1=a+b,S2=a方+b方,S3=a三次方+b三次方……,Sn=a的N次+b的N次
- 已知數(shù)列{an}的前n項和為Sn,a1=?2/3,滿足Sn+1/Sn+2=an(n≥2),計算S1,S2,S3,S4,并猜想Sn的表達式.
- 已知數(shù)列1/2,1/6,1/12,..,1/n(n+1),...,計算S1,S2,S3,由此推測計算Sn的公式.并給出證明
- 已知數(shù)列8*1/1^2*3^2,8*2/3^2*5^2,……8*n/(2n-1)^2(2n+1)^2,若sn為該數(shù)列的前n項和,計算s1,s2,s3,s4觀
- 一元一次方程x2+(2m-1)x+m2=0,有兩個實數(shù)根x1,x2 (1)求實數(shù)m的取值范圍 (2)當x12-x22=0時,求m
- 城市污染對人類有何危害
- ______ a lot of books,the boy knows much more than the boys of his age.
- Lucy often does her homework at school改為一般疑問句
- 我父親似乎很高興.My father ___ ___ ____ happy.
- much to 和 many 區(qū)別
- You are my little little apple~誰會翻譯吶