1 |
2 |
1 |
2 |
等價于x2+
1 |
2 |
1 |
2 |
∵(
1 |
2 |
1 |
2 |
∴x2+
1 |
2 |
1 |
2 |
設(shè)y=x2+
1 |
2 |
1 |
4 |
∴當(dāng)x≤-
1 |
4 |
1 |
2 |
1 |
2 |
解得λ≤-1,或λ≥
1 |
2 |
當(dāng)x>-
1 |
4 |
1 |
4 |
達(dá)到最小值時,x2+
1 |
2 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
16 |
因此λ的范圍就是 λ≤-1.
故答案為:(-∞,-1].
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
2 |
1 |
4 |
1 |
16 |