請(qǐng)看附圖. 除附圖外,還有其它簡(jiǎn)單解法.根據(jù)函數(shù)cos(x+y)對(duì)稱性可知,此積分的區(qū)間也可表示為由直線y=0,x=0,和y=π/2-x所圍成的區(qū)域.由于在此區(qū)域內(nèi)cos(x+y)≥0,故絕對(duì)值可被簡(jiǎn)單地拿掉而不用分區(qū)積分.即:
∫∫|cos(x+y)|dδ=∫dy∫|cos(x+y)|dx=∫dy∫cos(x+y)dx, (y積分:從0到π/2),(x積分:從0到π/2-y).這樣:
∫dy∫cos(x+y)dx=∫(1-siny)dy=[y+cosy] (積分從0到π/2)
=π/2-1
即:∫∫|cos(x+y)|dδ=π/2-1
![](http://b.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=c0ade6327bec54e741b912188908b768/08f790529822720eed6189f67bcb0a46f21fab0b.jpg)