精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 如圖,在正方形ABCD中,F為DC的中點,E為BC上一點,且EC=1/4BC.求AF垂直EF.

    如圖,在正方形ABCD中,F為DC的中點,E為BC上一點,且EC=1/4BC.求AF垂直EF.
    用勾股定理來證明.下面是圖.
    數(shù)學人氣:307 ℃時間:2019-09-17 03:54:45
    優(yōu)質(zhì)解答
    為了計算簡單,設(shè)正方形邊長為4a,則CF=DF=2a,CE=a,BE=3a
    ∴AF^2=AD^2+DF^2=(4a)^2+(2a)^2=20a^2
    EF^2=CE^2+CF^2=a^2+(2a)^2=5a^2
    AE^2=AB^2+BE^2=(4a)^2+(3a)^2=25a^2
    ∴AF^2+EF^2=AE^2
    由勾股定理逆定理知∠AFE=90°
    從而得AF⊥EF
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版