1 |
x |
a |
x2 |
x+a |
x2 |
∵a>0,∴f'(x)>0,故f(x)在(0,+∞)上是單調(diào)遞增函數(shù).(4分)
(Ⅱ)由(1)可知:f′(x)=
x+a |
x2 |
①若a≥-1,則x+a≥0,即f'(x)≥0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為增函數(shù),f(x)min=f(1)=-a(6分)
②若a≤-e,則x+a≤0,即f'(x)≤0在[1,e]上恒成立,此時(shí)f(x)在[1,e]上為減函數(shù),f(x)min=f(e)=1?
a |
e |
③若-e<a<-1,令f'(x)=0得x=-a,
當(dāng)1<x<-a時(shí),f'(x)<0,∴f(x)在(1,-a)上為減函數(shù),
當(dāng)-a<x<e時(shí),f'(x)>0,∴f(x)在(-a,e)上為增函數(shù),
f(x)min=f(-a)=ln(-a)+1(11分)
綜上可知:當(dāng)a≥-1時(shí),f(x)min=-a;
當(dāng)a≤-e時(shí),f(x)min=1?
a |
e |
當(dāng)-e<a<-1時(shí),f(x)min=ln(-a)+1(12分)