1、f(x)的最小正周期為2π/2=π
2、令2kπ-π/2≤2x+π/3≤2kπ+π/2,以求f(x)的單調(diào)增區(qū)間,得
kπ-5π/12≤x≤kπ+π/12,(k∈Z)
令2kπ+π/2≤2x+π/3≤2kπ+3π/2,以求f(x)的單調(diào)減區(qū)間,得
kπ+π/12≤x≤kπ+7π/12,(k∈Z)
3、f(x)=sin(2x+π/3)對(duì)應(yīng)的奇函數(shù)為±sin2x
f(x)=sin(2x+π/3)= sin[2(x+π/6)]
f(x)向左平移π/3得f(x+π/3)=sin[2(x+π/3+π/6)]= -sin2x,是奇函數(shù).
繼續(xù)向左平移周期的整數(shù)倍,得f(x+π/3+kπ)=sin[2(x+π/3+kπ+π/6)]= -sin2x,仍是奇函數(shù).
f(x)向右平移π/6得f(x-π/6)=sin[2(x-π/6+π/6)]=sin2x,是奇函數(shù).
繼續(xù)向右平移周期的整數(shù)倍,得f(x-π/6-kπ)=sin[2(x-π/6-kπ+π/6)]=sin2x,仍是奇函數(shù).
綜上所述,
f(x)向左kπ+π/3,或向右平移kπ-π/6,(k∈Z),仍是奇函數(shù).
已知函數(shù)f(x)=2acos^2x+bsinxcosx-根號(hào)3/2,且f(0)=根號(hào)3/2,f(pai/4)=1/2
已知函數(shù)f(x)=2acos^2x+bsinxcosx-根號(hào)3/2,且f(0)=根號(hào)3/2,f(pai/4)=1/2
1.求f(x)的最小正周期
2.求f(x)的單調(diào)遞減區(qū)間
3.函數(shù)f(x)的圖像經(jīng)過怎樣的平移才能使圖像對(duì)應(yīng)的函數(shù)變?yōu)槠婧瘮?shù)
1.求f(x)的最小正周期
2.求f(x)的單調(diào)遞減區(qū)間
3.函數(shù)f(x)的圖像經(jīng)過怎樣的平移才能使圖像對(duì)應(yīng)的函數(shù)變?yōu)槠婧瘮?shù)
數(shù)學(xué)人氣:117 ℃時(shí)間:2019-08-20 11:53:56
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知函數(shù)f(x)=2acos^2x+bsinxcosx-根號(hào)3/2,且f(0)=根號(hào)3/2,f(pai/4)=1/2 把它化簡
- 已知函數(shù)f(x)=2acos2x+bsinxcosx-32,且f(0)=32,f(π4)=1/2.(1)求f(x)的最小正周期;(2)求f(x)的單調(diào)遞增區(qū)間.
- 已知函數(shù)f(x)=2acos平方x+bsinxcosx.且f(0)=2.f(60度)=1/2+根號(hào)3/2.
- 已知函數(shù)f(x)=2acos^2x+bsinxcosx,f(0)=2,f(π/3)=1/2+(根號(hào)3)/2
- 設(shè)函數(shù)f(x)2acos²x+bsinxcosx滿足f(0)=2,f(π/3)=(根號(hào)3+1)/2
- 表演者取出一裝滿水的飲料瓶,旋開瓶蓋,水卻從瓶底流出的真相(用物理知識(shí)回答)
- 求一/二階微分方程通解
- 把這句話改為比喻句:我的心很疼痛,很難受.如題
- 兩分鐘英語對(duì)話,兩人的,一共十來句就行,新穎點(diǎn)的,不簡單也不難,
- who can tell me?thanks alot.
- My mother works for 8__________(huor)a day
- 碳酸鈉與水二氧化碳反應(yīng)方程式:Na2CO3+CO2+H2O=2NaHCO3這個(gè)反應(yīng)方程式有離子方程式
猜你喜歡
- 1關(guān)于虛擬語氣的一個(gè)問題!if條件句,表示與將來事實(shí)相反時(shí),從句謂語是過去時(shí)或should do
- 2分子間都存在范德華力嗎
- 3出租車:乘車不超過3千米時(shí),收費(fèi)5元(起步價(jià))超過部分每千米加收1.5元.王叔叔乘車15千米,
- 4幼兒園阿姨給小朋友分糖,如果每個(gè)小朋友分6顆,還多18顆糖,如果每個(gè)小朋友分9顆,就差8顆
- 5在三角形ABC中,CE平分角ACB,AC=8cm,AB=12cm,BC=10cm,過B作BD平行于CE,求BD的長.
- 6大自然的作文 300字
- 7We left the classroom after we finished the homework.(改成同義句) we___ ____ the classroom _____.
- 8AB是圓O的直徑,PA垂直于圓O所在的平面,C是圓周上的任意一點(diǎn),求證:BC⊥面PAC
- 9奧運(yùn)會(huì)幾年一次
- 10So 15 bottles of beer should be enough.
- 11I am gIad to learn that you wiIl coming to China.
- 12we watch TV at home改一般疑問句并做否定回答