∴an+1=
n |
n+2 |
∴(1)a2=
1 |
6 |
1 |
12 |
1 |
20 |
(2)猜測(cè)an=
1 |
n(n+1) |
①當(dāng)n=1時(shí),結(jié)論顯然成立.
②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即ak=
1 |
k(k+1) |
則當(dāng)n=k+1時(shí),ak+1=
k |
k+2 |
k |
k+2 |
1 |
k(k+1) |
1 |
(k+1)(k+2) |
故當(dāng)n=k+1時(shí)結(jié)論也成立.
由①、②可知,對(duì)于任意的n∈N*,都有an=
1 |
n(n+1) |