x=ty+m代入y2=x,可得y2-ty-m=0,根據(jù)韋達(dá)定理有y1?y2=-m,
∵
OA |
OB |
∵點(diǎn)A,B位于x軸的兩側(cè),
∴y1?y2=-2,故m=2.
不妨令點(diǎn)A在x軸上方,則y1>0,
又F(
1 |
4 |
∴S△ABO+S△AFO=
1 |
2 |
1 |
2 |
1 |
4 |
9 |
8 |
2 |
y1 |
當(dāng)且僅當(dāng)
9 |
8 |
2 |
y1 |
4 |
3 |
∴△ABO與△AFO面積之和的最小值是3,
故答案為:3.
OA |
OB |
OA |
OB |
1 |
4 |
1 |
2 |
1 |
2 |
1 |
4 |
9 |
8 |
2 |
y1 |
9 |
8 |
2 |
y1 |
4 |
3 |