精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)列an中a1=1,且點(diǎn)【a(n),a(n-1)】(n屬于n+)在函數(shù)f(x)=x+2的圖像上

    數(shù)列an中a1=1,且點(diǎn)【a(n),a(n-1)】(n屬于n+)在函數(shù)f(x)=x+2的圖像上
    (1)求a(n)的通項(xiàng)公式
    (2)在數(shù)列a(n)中 依次抽取3.4.6..2∧n+1冪+2..項(xiàng),組成新數(shù)列b(n),試求b(n)的通項(xiàng)公式bn,及前n項(xiàng)和Sn
    數(shù)學(xué)人氣:465 ℃時(shí)間:2020-03-29 22:08:56
    優(yōu)質(zhì)解答
    (1)
    f(x) =x+2
    a(n-1) = an+2
    an-a(n-1) =-2
    an - a1 = -2(n-1)
    an = -2n+3
    (2)
    bn = (2+2^(n+1)) an
    = (2+2^(n+1)) (-2n+3)
    = -4n+6 - n.2^(n+2) + 3.2^(n+1)
    consider
    1+x+x^2+..+x^n = (x^(n+1) -1) /(x-1)
    1+2x+..+nx^(n-1)
    = [(x^(n+1) -1) /(x-1)]'
    = { nx^(n+1) - (n+1)x^n +1 } /(x-1)^2
    multiply both side by x^2
    x^2+ 2x^3 +...+ n.x^(n+1) = x^2{ nx^(n+1) - (n+1)x^n +1 } /(x-1)^2
    put x = 2
    1.2^2+2(2)^3+..+n(x^(n+1))
    =4{ n.2^(n+1) - (n+1)2^n +1 }
    bn = -4n+6 - n.2^(n+2) + 3.2^(n+1)
    Sn = b1+b2+..+bn
    = n(-2n+4) - 4{ n.2^(n+1) - (n+1)2^n +1 } + 12(2^n-1)
    = n(-2n+4) +2^n.(12-8n+4n+4)-16
    = -2n^2+4n-16 + (-4n+16) .2^nmultiply both side by x^2x^2+ 2x^3 +...+ n.x^(n+1) = x^2{ nx^(n+1) - (n+1)x^n +1 } /(x-1)^2put x = 2怎回事看不懂謝謝這是求不好意思summation( n. 2^(n+2) )的方法1+2x+..+nx^(n-1)= { nx^(n+1) - (n+1)x^n +1 } /(x-1)^2 x^3{1+2x+..+nx^(n-1)}= x^3 [ { nx^(n+1) - (n+1)x^n +1 } /(x-1)^2]x^3+ 2x^4 +...+ n.x^(n+2) = x^3{ nx^(n+1) - (n+1)x^n +1 } /(x-1)^2 put x=2summation( n. 2^(n+2) ) = 8{ n.2^(n+1) - (n+1)2^n +1 } bn = -4n+6 - n. 2^(n+2) + 3. 2^(n+1)Sn = b1+b2+..+bn = n(-2n+4) - 8{ n.2^(n+1) - (n+1)2^n +1 } + 12(2^n-1)= -2n^2+4n-20 + (-8n+20). 2^n
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版