1+x |
1?x |
且f(-x)=ln
1?x |
1+x |
1+x |
1?x |
故函數(shù)f(x)為奇函數(shù)
又∵f(x)=ln
1+x |
1?x |
且在區(qū)間(-1,1)上y=ln(1+x)和y=sinx為增函數(shù),y=ln(1-x)為減函數(shù)
∴函數(shù)f(x)在區(qū)間(-1,1)上為增函數(shù),
則不等式f(a-2)+f(a2-4)<0可化為:
f(a2-4)<-f(a-2),
即f(a2-4)<f(-a+2),
即-1<a2-4<-a+2<1
解得
3 |
故不等式f(a-2)+f(a2-4)<0的解集是(
3 |
故答案為:(
3 |