精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設x y為正實數(shù)且(√1+x^2+x-1)(√1+y^2+y-1)≤2 則xy的最大值為

    設x y為正實數(shù)且(√1+x^2+x-1)(√1+y^2+y-1)≤2 則xy的最大值為
    數(shù)學人氣:563 ℃時間:2020-02-04 08:16:57
    優(yōu)質解答
    題目有歧義,建議用標準記號 sqrt{x} 表示x的平方根.1+x方 和1+y方在根號里 (sqrt{1+x^2}+x-1)(sqrt{1+y^2}+y-1)≤2Answer: Max(xy)=1.Denote f(x)=sqrt{1+x^2}+x-1. We compute thatf'(x)=1+x/sqrt(1+x^2).So f(x) is an increasing function on the interval [0,+infinity).Since f(0)=0, we have f(x)>0 for all x>0.(1)Fix x0. According to the given condition, the y maximizing xy must be the maximum y such that f(x0)f(y)<=2.(2)Since f(y) is an increasing function in y, with the aid of (1),we conclude that this y must equalize (2), namelyf(x0)f(y)=2.(3)Now we solve y from (3). Observe thatf(x0)f(1/x0)=2.(4).Comparing (3) with (4), we get f(y)=f(1/x0).(5)Since f(y) is strictly monotone (in fact increasing), we infer y=1/x0 from (5).It follows immediately that x0*y=1. In other words, for every x=x0 that possibly maximizes xy,the variable y must be 1/x0.It is easy to check that x=y=1 is such a case. So the maximum value 1 is achievable.This confirms the solution Max{xy}=1.
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版