公式法、累加法、累乘法、待定系數法、對數變換法、迭代法、數學歸納法、換元法、不動點法、特征根的方法等等.
類型一
歸納—猜想—證明
由數列的遞推公式可寫出數列的前幾項,再由前幾項總結出規(guī)律,猜想出數列的一個通項公式,最后用數學歸納法證明.
類型二
“逐差法”和“積商法”
(1)當數列的遞推公式可以化為an+1-an=f(n)時,取n=1,2,3,…,n-1,得n-1個式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得時,兩邊累加得通項an,此法稱為“逐差法”.
(2)當數列的遞推公式可以化為an+1/an=f(n)時,令n=1,2,3,…,n-1,得n-1個式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得時,兩邊連乘可求出an,此法稱為“積商法”.
類型三
構造法
遞推式是pan=qan-1+f(n)(p、q是不為零的常數),可用待定系數法構造一個新的等比數列求解.
類型四
可轉化為類型三求通項
(1)“對數法”轉化為類型三.
遞推式為an+1=qank(q>0,k≠0且k≠1,a1>0),兩邊取常用對數,得lgan+1=klgan+lgq,令lgan=bn,則有bn+1=kbn+lgq,轉化為類型三.
(2)“倒數法”轉化為類型三.
遞推式為商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb).
若b=0,得an+1=pan/(qan+c).因為an≠0,所以兩邊取倒數得1/an+1=q/p+c/pan,令bn=1/an,則bn+1=(c/p)bn+q/p,轉化為類型三.
若b≠0,設an+1+x=y(an+x)/qan+c,與已知遞推式比較求得x、y,令bn=an+x,得bn+1=ybn/qan+c,轉化為b=0的情況.
類型五
遞推式為an+1/an=qn/n+k(q≠0,k∈N)
可先將等式(n+k)an+1=qnan兩邊同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,則bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1.
從而bn+1=qbn,因此數列{bn}是公比為q,首項為b1=k(k-1)(k-2)…2•1•a1=k!a1的等比數列,進而可求得an.
總之,由數列的遞推公式求通項公式的問題比較復雜,不可能一一論及,但只要我們抓住遞推數列的遞推關系,分析結構特征,善于合理變形,就能找到解決問題的有效途徑.
類型一歸納—猜想—證明
由數列的遞推公式可寫出數列的前幾項,再由前幾項總結出規(guī)律,猜想出數列的一個通項公式,最后用數學歸納法證明.
例1設數列{an}是首項為1的正項數列,且(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…),則它的通項公式是an=______________.(2000年全國數學卷第15題)
將(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)分解因式得(an+1+an)〔(n+1)an+1-nan〕=0.
由于an>0,故(n+1)an+1=nan,即an+1=n/(n+1)an.
因此a2=(1/2)a1=(1/2),a3=(2/3)a2=(1/3),….猜想an=(1/n),可由數學歸納法證明之,證明過程略.
類型二“逐差法”和“積商法”
(1)當數列的遞推公式可以化為an+1-an=f(n)時,取n=1,2,3,…,n-1,得n-1個式子:
a2-a1=f(1),a3-a2=f(2),…,an-an-1=f(n-1),
且f(1)+f(2)+…+f(n-1)可求得時,兩邊累加得通項an,此法稱為“逐差法”.
例2已知數列{an}滿足a1=1,an=3n-1+an-1(n≥2),證明:an=(3n-1)/2.
(2003年全國數學卷文科第19題)
證明:由已知得an-an-1=3n-1,故
an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=3n-1+3n-2+…+3+1=3n-1/2.
所以得證.
(2)當數列的遞推公式可以化為an+1/an=f(n)時,令n=1,2,3,…,n-1,得n-1個式子,即
a2/a1=f(1),a3/a2=f(2),a4/a3=f(3),…,an/an-1=f(n-1),且f(1)f(2)f(3)…f(n-1)可求得時,兩邊連乘可求出an,此法稱為“積商法”.
例3(同例1)(2000年全國數學卷第15題)
另將(n+1)a2n+1-nan2+an+1an=0(n=1,2,3,…)化簡,得(n+1)an+1=nan,即
an+1/an=n/(n+1).
故an=an/an-1•an-1/an-2•an-2/an-3•…•a2/a1=n-1/n•n-2/n-1•n-3/n-2• … •1/2=1/n.
類型三構造法
遞推式是pan=qan-1+f(n)(p、q是不為零的常數),可用待定系數法構造一個新的等比數列求解.
例4(同例2)(2003年全國數學卷文科第19題)
另由an=3n-1+an-1得3•an/3n=an-1/3n-1+1.
令bn=an/3n,則有
bn=1/3bn-1+1/3.(*)
設bn+x=1/3(bn-1+x),則bn=1/3bn-1+1/3x-x,與(*)式比較,得x=-1/2,所以bn-1/2=1/3(bn-1-1/2).因此數列{bn-1/2}是首項為b1-1=a1/3=-1/6,公比為1/3的等比數列,所以bn-1/2=-1/6•(1/3)n-1,即an/3n-1/2=-1/6(1/3)n-1.故an=3n〔1/2-1/6(1/3)n-1〕=3n-1/2.
例5數列{an}中,a1=1,an+1=4an+3n+1,求an.
令an+1+(n+1)x+y=4(an+nx+y),則
an+1=4an+3nx+3y-x,與已知an+1=4an+3n+1比較,得
3x=3, 所以
x=1,
3y-x=1, y=(2/3).
故數列{an+n+(2/3)}是首項為a1+1+(2/3)=(8/3),公比為4的等比數列,因此an+n+(2/3)=(8/3)•4n-1,即
an=(8/3)•4n-1-n-(2/3).
另由已知可得當n≥2時,an=4an-1+3(n-1)+1,與已知關系式作差,有an+1-an=4(an-an-1)+3,即an+1-an+1=4(an-an-1+1),因此數列{an+1-an+1}是首項為a2-a1+1=8-1+1=8,公比為4的等比數列,然后可用“逐差法”求得其通項an=(8/3)•4n-1-n-(2/3).
類型四可轉化為
類型三求通項
(1)“對數法”轉化為
類型三.
遞推式為an+1=qank(q>0,k≠0且k≠1,a1>0),兩邊取常用對數,得lgan+1=klgan+lgq,令lgan=bn,則有bn+1=kbn+lgq,轉化為
類型三.
例6已知數列{an}中,a1=2,an+1=an2,求an.
由an+1=an2>0,兩邊取對數得lgan+1=2lgan.令bn=lgan則bn+1=2bn.因此數列{bn}是首項為b1=lga1=lg2,公比為2的等比數列,故bn=2n-1lg2=lg22n-1,即an=22n-1.
(2)“倒數法”轉化為
類型三.
遞推式為商的形式:an+1=(pan+b)/(qan+c)(an≠0,pq≠0,pc≠qb).
若b=0,得an+1=pan/(qan+c).因為an≠0,所以兩邊取倒數得1/an+1=q/p+c/pan,令bn=1/an,則bn+1=(c/p)bn+q/p,轉化為
類型三.
若b≠0,設an+1+x=y(an+x)/qan+c,與已知遞推式比較求得x、y,令bn=an+x,得bn+1=ybn/qan+c,轉化為b=0的情況.
例7在數列{an}中,已知a1=2,an+1=(3an+1)/(an+3),求通項an.
設an+1+x=y(an+x)/an+3,則an+1=(y-x)an+(y-3)x/an+3,結合已知遞推式得
y-x=3, 所以
x=1,
y-3=1,y=4,
則有an+1+1=4(an+1)/an+3,令bn=an+1,則bn+1=4bn/bn+2,求倒數得1/bn+1=1/2•1/bn+1/4,即1/bn+1-1/2=1/2(1/bn-1/2).
因此數列{1/bn-1/2}是首項為1/b1-1/2=1/a1+1-1/2=-1/6,公比為1/2的等比數列.
故1/bn-1/2=(-1/6)(1/2)n-1,從而可求得an.
類型五遞推式為an+1/an=qn/n+k(q≠0,k∈N)
可先將等式(n+k)an+1=qnan兩邊同乘以(n+k-1)(n+k-2)…(n+1),得(n+k)(n+k-1)(n+k-2)…(n+1)an+1=q(n+k-1)(n+k-2)…(n+1)nan,令bn=(n+k-1)(n+k-2)…(n+1)•nan,則bn+1=(n+k)(n+k-1)(n+k-2)…(n+1)an+1.
從而bn+1=qbn,因此數列{bn}是公比為q,首項為b1=k(k-1)(k-2)…2•1•a1=k!a1的等比數列,進而可求得an.
例8(同例1)(2000年全國數學卷第15題)
另將(n+1)a2n+1-na2n+an+1an=0(n=1,2,3,…),化簡得(n+1)an+1=nan,令nan=bn,則bn+1=bn,所以數列{bn}是常數列,由于首項b1=1•a1=1,所以bn=1,即nan=1,故an=1/n.
總之,由數列的遞推公式求通項公式的問題比較復雜,不可能一一論及,但只要我們抓住遞推數列的遞推關系,分析結構特征,善于合理變形,就能找到解決問題的有效途徑.
已知一個數列的遞推公式、如何求解它的通項公式.
已知一個數列的遞推公式、如何求解它的通項公式.
數學人氣:928 ℃時間:2020-04-14 04:14:26
優(yōu)質解答
我來回答
類似推薦
猜你喜歡
- 1I have been playing the piano since I _(be) 6 years old.
- 2比如現在讓你寫出 鎂(Mg)得到或者失去電子后的所成離子的符號,那我右上角
- 3太陽能如何轉換為煤中的能量?
- 4由參數方程確定的函數的求導公式
- 5在一道減法算式中,差比減數大40,減數是差的1/9,求被減數是多少.
- 6一道二元一次方程組!
- 7兩列火車,一列長110米,每秒行18米,另一列長130米,每秒行12米.(1)兩車相向而行,從車
- 8believe me和trust me 用法和區(qū)別是什么
- 9暚這個字現在在字典里還有嗎?
- 10I'll take a picture for lingling 改為現在進行時 怎么改?
- 11用a,s,a,u,e,g,s拼單詞
- 12用兩個相同的電熱器給質量相同的物質甲和水加熱,它們的溫度隨加熱時間的變化關系如圖6所示,據此判斷物質