精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 計(jì)算拋物線y^2=4x從頂點(diǎn)(0,0)到這曲線上的另一點(diǎn)(1,2)的弧長(zhǎng) √2+ln(1+√2)

    計(jì)算拋物線y^2=4x從頂點(diǎn)(0,0)到這曲線上的另一點(diǎn)(1,2)的弧長(zhǎng) √2+ln(1+√2)
    數(shù)學(xué)人氣:370 ℃時(shí)間:2020-05-08 10:18:34
    優(yōu)質(zhì)解答
    這是曲線積分問題;
    y² = 4x ==> x = y²/4
    ==> dx/dy = y/2
    ==> dx = (y/2)*dy
    在(x,y)點(diǎn)的弧長(zhǎng)微元為:
    dL =√[(dx)²+(dy)²
    = √[(y/2*dy)²+(dy)²]
    = √(y²/4+1) *dy
    L = [0,2]∫[√(y²/4+1) *dy]
    作變量代換 y =2tanu ==> dy =2sec²u,原式化為:
    L = [0,π/4]∫[√(tan²y+1) *2sec²udu]
    = [0,π/4]∫ (2sec³udu)
    = [0,π/4]∫ (2/(1-sin²u)² *cosdu)
    = [0,π/4]∫ [2/(1-sinu)²(1+sinu)² dsinu]
    = [0,π/4]∫ 1/2 *1/[(2+sinu)/(1+sinu)² + (2-sinu)/(1-sinu)²]*du
    = 1/2* [0,π/4]∫ [1/(1+sinu)² +1/(1+sinu)+1/(1-sinu)² +1/(1-sinu)]*du
    = 1/2*[ -1/(1+sinu) +ln(1+sinu) +1/(1-sinu) -ln(1-sinu)] |[0,π/4]
    = 1/2 *(2√2 + ln[(2+√2)/(2-√2)]
    = √2 + ln(√2+1)
    我來回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版