∴切線方程為:y=8x-10
(Ⅱ)f'(x)=x(ax-2),
(1)a=0時(shí),f'(x)=-2x,f(2)=-2<0,不符合題意,所以a≠0;
(2)f'(x)=x(ax-2)=0,x=0或
2 |
a |
當(dāng)0<
2 |
a |
x | -1 | (-1,0) | 0 | (0,
|
| (
| 2 | ||||||
f'(x) | + | 0 | _ | 0 | + | ||||||||
f(x) |
| 增 | 極大值2 | 減 | 極小值
| 增 |
|
2 |
a |
2(3a2?2) |
3a2 |
∴只需f(?1)=
3?a |
3 |
2(4a?3) |
3 |
(3)
2 |
a |
x | -1 | (-1,0) | 0 | (0,2) | 2 | ||||
f'(x) | + | 0 | _ | ||||||
f(x) |
| 增 | 極大值2 | 減 |
|
3?a |
3 |
2(4a?3) |
3 |
3 |
4 |
(4)a<0時(shí),f(2)=
2(4a?3) |
3 |
綜上,
3 |
4 |