∵若x1,x2∈A,且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù)
∴①函數(shù)f(x)=x^2不是單函數(shù),∵f(-1)=f(1),顯然-1≠1,∴函數(shù)f(x)=x^2(x∈R)不是單函數(shù);
②∵此命題顯然是原例題的逆否命題,故②正確;
③∵f(x)為單函數(shù),對于任意b∈B,若存在x1≠x2,使得f(x1)=f(x2)=b,則x1=x2,與x1≠x2矛盾∴③正確;
④例如①函數(shù)f(x)=x2在(0,+∞)上是增函數(shù),而它不是單函數(shù);故④不正確.
故答案為:②③.
函數(shù)f(x)的定義域為A,若x1、x2屬于A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1
函數(shù)f(x)的定義域為A,若x1、x2屬于A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1
例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x^2(x∈R)是單函數(shù)
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2)
③若f:A→B為單函數(shù),則對于任意b∈B,它至多有一個原象
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).
其中正確的是___.
例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x^2(x∈R)是單函數(shù)
②若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2)
③若f:A→B為單函數(shù),則對于任意b∈B,它至多有一個原象
④函數(shù)f(x)在某區(qū)間上具有單調(diào)性,則f(x)一定是單函數(shù).
其中正確的是___.
數(shù)學(xué)人氣:231 ℃時間:2020-05-16 11:35:23
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知函數(shù)f(x)=-2x^(1/2)],求f(x)的定義域,并證明在f(x)的定義域內(nèi),當(dāng)x1f(x2)
- 已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x1x2)=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0. ①求f(1)的值; ②判斷f(x)的單調(diào)性; ③若f(3)=-1,解不等式f(|x|)<-2.
- 已知函數(shù)f(x)的定義域為x≠o的一切實數(shù),對于定義域x1,x2都有f(X1·X2)=f(x1)+f(x2)
- 函數(shù)f(x)的定義域為D,若對于任意x1、x2∈D,當(dāng)x1<x2時,都有f(x1) ≤f(x2),則稱函數(shù)f(x)在D上為非減函
- 已知函數(shù)f(x)的定義域x∈R且x≠0,對定義域內(nèi)的任意x1,x2都有f(x1·x2﹚
- 初二物理用天平和量筒測某種液體的密度
- 用雖然……可是……而且造句,
- 你認(rèn)為自然生態(tài)系統(tǒng)中,各種動物的數(shù)量能不能無限增長?為什么?
- 線性代數(shù)里矩陣在左還是在右的問題
- 數(shù)學(xué)生活中哪些地方用到 對數(shù)
- 一個平行四邊形的底于高分別為3.2分米和1.它的面積與一個梯形的面積相等,如果梯形的上底和下底分別為2.4分米和3.6分米,那么它的高是幾?
- 他爸爸愛好烹飪 翻譯His father__________________-.
猜你喜歡
- 1氯化鎂是一種鹽,.
- 2設(shè)x為正實數(shù),則函數(shù)y=x^2-x+1/x的最小值是 2.函數(shù)y=-x-9/x+18(x>0)的最大值是
- 3小紅付出200元,買了X本練習(xí)本,每本12.5元應(yīng)該找回()元.當(dāng)X=10時,應(yīng)該找回()元.
- 4盒子里裝有15個球,分別寫著1~15各數(shù).如果摸到的是2的倍數(shù),則小剛贏,如果摸到的不是2的倍數(shù),則小強(qiáng)贏. (1)這樣約定公平嗎?為什么? (2)小剛一定會輸嗎?你能設(shè)計一個公平
- 5四個相同的蘋果隨機(jī)放入三個不同的盤子,有且只有一個盤子中蘋果數(shù)為2的概率是多少?
- 6有126本書,有3個書架,有6層,平均每層放幾本?
- 7850+250*(x-1)=x /2*400+x/2*200
- 8小馬虎解方程3/(2x-1)=2/(x+a)-1,去分母時,方程右邊的-1忘記乘6,因而求得的解為x=4,求a與x的值
- 9He is a man with _ eyes and _ shoulders.a.wide;wide b.broad;broad c.broad;wide d.wide;broad
- 10Sunflower,you are my constant belief.
- 11一個圓錐形沙堆,底面積是31.4m2,高是1.2m,用這堆沙在10m寬的公路上鋪2cm厚的路面,能鋪多少米?
- 12his height is the same as mine.(改為同義句)