即有f′(1)=3a+5,切線斜率為3a+5,
f(1)=2a,切點為(1,2a),
則曲線y=f(x)在點(1,f(1))處的切線方程為:y-2a=(3a+5)(x-1).
令y=0則x=
a+5 |
3a+5 |
a+5 |
3a+5 |
7 |
11 |
(Ⅱ)證明:由題意要證:當(dāng)k<1時,曲線y=f(x)與y=(k-1)ex+2x-2有唯一公共點,
即要證x3+3x2+(1-k)?ex=0在k<1時有唯一解.
設(shè)g(x)=x3+3x2+(1-k)?ex,
由于1-k>0,則g(x)>x3+3x2=x2(x+3),
①當(dāng)x≥-3時,g(x)>x2(x+3)≥0,則g(x)在x≥-3時無零點;
②當(dāng)x<-3時,g′(x)=3x2+6x+(1-k)?ex>3x2+6x=3x(x+2)>0,
則g(x)在x<-3時單調(diào)遞增.而g(-3)=(1-k)?e-3>0,
由于ex<e-3,則(1-k)?ex<(1-k)?e-3,
g(x)=x3+3x2+(1-k)?ex<x3+3x2+
1?k |
e3 |
設(shè)h(x)=x3+3x2+1-k,由于k-1<0,取x=k-4<-3,
則h(x)=h(k-4)=(k-4)3+3(k-4)2+1-k,
即h(k-4)=(k-4)2[(k-4)+3]+1-k=(k-1)[(k-4)2-1]<0,
即存在x=k-4,使得g(x)<h(x)<0,
故存在x0∈(k-4,-3),有g(shù)(x0)=0,
綜上,當(dāng)k<1時,曲線y=f(x)與y=(k-1)ex+2x-2有唯一公共點.