證明:∵△ABD和△EBC都是等邊三角形,
∴BD=AB,BE=BC;
∵∠DBA=∠EBC=60°,
∴∠DBA-∠EBA=∠EBC-∠EBA
∴∠DBE=∠ABC;
∵在△BDE和△BAC中
|
∴△BDE≌△BAC
∴DE=AC=AF
同理可證:△ECF≌△BCA,
∴EF=AB=AD
∴ADEF為平行四邊形;
(2)AB=AC時,?ADEF為菱形,當(dāng)∠BAC=150°時?ADEF為矩形.
理由是:∵AB=AC,
∴AD=AF.
∴?ADEF是菱形.
∴∠DEF=90°
=∠BED+∠BEC+∠CEF
=∠BCA+60°+∠CBA
=180-∠BAC+60°
=240°-∠BAC,
∴∠BAC=150°,
∵∠DAB=∠FAC=60°,
∴∠DAF=90°,
∴平行四邊形ADEF是矩形.