又f′(x)=2x?3+
1 |
x |
2x2?3x+1 |
x |
(2x?1)(x?1) |
x |
當(dāng)x>1或0<x<
1 |
2 |
1 |
2 |
所以函數(shù)f(x)的極大值=f(
1 |
2 |
5 |
4 |
函數(shù)f(x)的極小值=f(1)=-2.
(2)函數(shù)f(x)=ax2-(a+2)x+lnx的定義域為(0,+∞),
當(dāng)a>0時,f′(x)=2ax?(a+2)+
1 |
x |
2ax2?(a+2)x+1 |
x |
(2x?1)(ax?1) |
x |
令f'(x)=0,則x=
1 |
2 |
1 |
a |
①當(dāng)0<
1 |
a |
所以f(x)在[1,e]上的最小值是f(1)=-2;
②當(dāng)1<
1 |
a |
1 |
a |
③當(dāng)
1 |
a |
所以f(x)在[1,e]上的最小值是f(e)<f(1)=-2,不合題意.
故a的取值范圍為[1,+∞).