∴∠P=∠DAC,∠PFA=∠DAF,
∵AD平分∠BAC,
∴∠DAC=∠DAF,
∴∠P=∠PFA,
∴AP=AF,
∴△APF是等腰三角形.
(2)△DCH≌△BEF.
證明:∵AB∥CH,
∴∠BAD=∠H(兩直線平行,內(nèi)錯(cuò)角相等),∠B=∠DCH(兩直線平行,內(nèi)錯(cuò)角相等),
又∵EF∥AD(已知),
∴∠BFE=∠BAD;
∴∠BFE=∠H,
∵EF∥AD,
∴∠BEF=∠BAD,
又∵∠BDA=∠CDH(對頂角相等),
![](http://hiphotos.baidu.com/zhidao/pic/item/1e30e924b899a9010ea1b6871e950a7b0308f5ef.jpg)
∴∠BEF=∠CDH,
∴∠BEF=∠CDH
則在△DCH和△BEF中,
|
∴△DCH≌△BEF.
(3)AB=PC,
理由:∵AD平分∠BAC,
∴∠BAD=∠HAC,
∵AB∥CH,
∴∠HAC=∠H,
∴AC=CH,
∴△BEF≌△CDH,
∴BF=CH,
∴AC=BF,
∵△APF為等腰三角形,
∴AP=AF,
∴AC+AP=BF+AF,即AB=PC.