用夾逼定理
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
limn(n+1)(2n+1)/[6(n³+n²)]=1/3
limn(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3哪里復(fù)雜啊,你仔細(xì)看看,反正要用夾逼定理的都是這類似的題目把它改成二次的會(huì)不會(huì)簡(jiǎn)單些啊求lim